Henryk Świnder^{*}, Alicja Uliasz-Bocheńczyk^{**}

KINETYCZNY MODEL SEKWESTRACJI DWUTLENKU WĘGLA W WODNYCH ROZTWORACH WYBRANYCH ODPADÓW PRZEMYSŁOWYCH

Streszczenie

Wiązanie CO_2 w zawiesinach odpadowo-wodnych przez mineralną karbonatyzację jest jedną z metod ograniczania emisji dwutlenku węgla. Mineralna karbonatyzacja (mineralna sekwestracja) CO_2 w zawiesinach popiołowo-wodnych jest procesem złożonym. Na podstawie badań pochłaniania CO_2 przez zawiesiny wodne popiołów fluidalnych z Elektrociepłowni Tychy SA opracowano model kinetyczny sekwestracji dwutlenku węgla. Model ten, opisujący kinetykę sekwestracji CO_2 , jest próbą określenia szybkości reakcji zachodzących w poszczególnych etapach sekwestracji dwutlenku węgla, prowadzących do jego trwałego związania i utworzenia stabilnych, w założonych warunkach, produktów. Skład fazowy zawiesin popiołowo-wodnych, ich współzależność w stanach równowagowych przy wprowadzaniu CO_2 pozwala na postawienie tezy, że wyniki badań popiołów lotnych z Elektrociepłowni Tychy SA będzie można odnieść do innych odpadów przemysłowych (popiołów lotnych, odpadów z suchego i półsuchego odsiarczania spalin, żużli hutniczych, pyłów z instalacji pieców cementowych), w których występują takie same lub podobne składy fazowe.

Kinetic model of carbon dioxide sequestration in aqueous solutions of selected industrial waste

Abstract

Binding of CO_2 by mineral carbonation in aqueous waste suspensions is a method of reducing the emissions of carbon dioxide. Mineral carbonation (mineral sequestration) of CO_2 in aqueous ash suspensions is a complex process. Research on CO_2 absorption in aqueous suspensions of fluidized ashes from a heat and power plant in Tychy served as a base to prepare a kinetic model of carbon dioxide sequestration. The model, which shows the kinetics of CO_2 sequestration, is an attempt at determining the speed of reactions taking place at each stage of carbon dioxide sequestration, leading towards its permanent binding and the creation of products which are stable in the assumed conditions. The phase composition of aqueous ash solutions and their interdependence on each other in equilibrium conditions on introducing CO_2 makes it possible to argue that the results of research on fly ashes in the Tychy power plant may be transferred to other industrial waste (fly ashes, waste from dry and semi-dry desulphurization of flue gases, steel slag, cement kilns dusts), where the same or similar phase compositions appear.

1. WPROWADZENIE

Konieczność redukcji ilości dwutlenku węgla, wprowadzanego do środowiska przyrodniczego, wymusza poszukiwanie rozwiązań pozwalających zarówno na ograniczenie gazowej emisji, jak i metod jego bezpiecznego wychwytywania i składowa-

^{*} Główny Instytut Górnictwa

^{**} Instytut Gospodarki Surowcami Mineralnymi i Energią PAN w Krakowie

nia. Jedną z interesujących metod unieszkodliwiania dwutlenku węgla jest mineralna karbonatyzacja (IPCC 2007), w wyniku której powstają stabilne, obojętne dla środowiska produkty. Mineralna karbonatyzacja (mineralna sekwestracja) polega na reakcji CO_2 z tlenkami metali (przede wszystkim CaO i MgO), w wyniku której powstają węglany. Do wiązania CO_2 w wyniku mineralnej karbonatyzacji mogą być stosowane surowce naturalne (np. serpentyn), jak również odpady (np. popioły lotne).

Propozycja zastosowania procesu karbonatyzacji występującego w przyrodzie, jako metoda ograniczania emisji CO₂, została opublikowana przez W. Seifritza w czasopiśmie Nature w 1991 roku. Pierwsze jednak publikacje na temat badań prowadzonych z wykorzystaniem surowców naturalnych, zostały opublikowane dopiero w połowie lat 90. ubiegłego wieku (Lackner i in. 1995; Lackner, Butt, Wendt 1997). Ze względu na wysokie koszty wydobycia i przeróbki surowców naturalnych oraz związaną z tymi procesami dodatkową emisję dwutlenku węgla, rozpoczęto badania nad zastosowaniem odpadów do wiązania CO₂. Badania prowadzono z wykorzystaniem odpadów mineralnych, przede wszystkim żużli hutniczych i popiołów lotnych (np. Baciocchi i in. 2009; Huijgen, Comans 2006; Back i in. 2008).

W Polsce badania nad mineralną sekwestracją CO₂ były prowadzone z zastosowaniem zawiesin odpadowo-wodnych, przede wszystkim na bazie popiołów lotnych z energetyki zawodowej (Uliasz-Bocheńczyk i in. 2007; Uliasz-Bocheńczyk 2008; 2009; Uliasz-Bocheńczyk, Mokrzycki 2009; Uliasz-Bocheńczyk, Piotrowski 2008).

Szczególnie interesującym materiałem do wiązania CO₂ są popioły fluidalne, które stanowią znaczącą ilościowo grupę odpadów mineralnych o dużej zawartości wolnego CaO, w niewielkim stopniu wykorzystywaną gospodarczo. W ten sposób można zaliczyć mineralną sekwestrację do metod niekonwencjonalnego zagospodarowywania popiołów (Łączny 2002).

Z tego względu do przeprowadzenia badań wybrano popioły z kotła fluidalnego typu CYMIC zainstalowanego w Elektrociepłowni Tychy SA. Popioły te charakteryzowały się dużą zawartością całkowitego CaO i wolnego CaO (Uliasz-Bocheńczyk 2009). W kotłach tego typu temperatura procesu zawiera się w granicach 950–1000°C, co powoduje, że powstające popioły lotne znacznie różnią się od popiołów powstających w kotłach pyłowych (Gawlicki 2007; Giergiczny 2006). Cechą charakterystyczną popiołów fluidalnych jest mniejsza wodożądność w stosunku do tradycyjnych popiołów z kotłów pyłowych (Łączny 1983; Łączny, Dąbrowska, Kubicki 1995).

Opracowany model, opisujący kinetykę sekwestracji CO_2 na przykładzie zawiesin wodnych popiołów z Elektrociepłowni Tychy SA, jest próbą określenia szybkości reakcji zachodzących na poszczególnych etapach sekwestracji dwutlenku węgla, prowadzących do jego trwałego związania i utworzenia stabilnych, w założonych warunkach, produktów.

Zawartość poszczególnych minerałów w popiołach lotnych, ich współzależność w stanach równowagowych przy wprowadzaniu CO₂, pozwala na postawienie tezy, że wyniki badań popiołów lotnych z Elektrociepłowni Tychy SA, będzie można odnieść do innych odpadów przemysłowych (popiołów lotnych, odpadów z suchego i półsuchego odsiarczania spalin, żużli hutniczych, pyłów z instalacji pieców cementowych), charakteryzujących się podobnymi składami fazowymi.

Mineralna sekwestracja CO_2 z zastosowaniem zawiesin popiołowo-wodnych jest procesem złożonym. Największy problem stanowi określenie mechanizmów reakcji, szczególnie w jej początkowym okresie. Reakcje wiązania CO_2 przez zawiesiny popiołowo-wodne są reakcjami heterogenicznymi. W procesach heterogenicznych, oprócz parametrów stanu, takich jak: ciśnienie, temperatura, stężenie, istotną rolę odgrywają inne czynniki charakteryzujące stan fizykochemiczny substratów. W przypadku zawiesin popiołowo-wodnych należy wymienić przede wszystkim: skład ziarnowy (stopień rozdrobnienia) oraz skład fazowy (popiołu).

Przedstawiony w artykule model kinetyczny opracowano na podstawie badań pochłaniania CO₂ przez zawiesiny popiołowo-wodne przeprowadzone w instalacji opisanej w publikacji (Uliasz-Bocheńczyk 2009). Badania pochłaniania wykonano w Katedrze Inżynierii Środowiska i Przeróbki Surowców AGH.

2. ANALIZA I DYSKUSJA WYNIKÓW PRZEPROWADZONYCH BADAŃ

Analiza otrzymanych wyników potwierdziła złożoność procesu wiązania gazowego CO₂ przez zawiesinę wodną popiołów fluidalnych z Elektrociepłowni Tychy SA. Na podstawie założeń do modelu termodynamicznego (Uliasz-Bocheńczyk, Cempa 2010), określono stałe szybkości reakcji poszczególnych obszarów etapów karbonatyzacji zawiesiny wodnej popiołów fluidalnych z Elektrociepłowni Tychy SA z dwutlenkiem węgla (rys. 1).

Rys. 1. Pochłanianie CO₂ przez zawiesiny wodne popiołów fluidalnych z Elektrociepłowni Tychy SA; t – czas, A, B, C, D – etapy procesu karbonatyzacji (Uliasz-Bocheńczyk 2009; Uliasz-Bocheńczyk, Cempa 2010)

Etap A (rys. 1)

W początkowej fazie wprowadzania CO_2 do mieszaniny reakcyjnej następowała dyfuzja gazu do roztworu, a następnie jego stopniowe rozpuszczanie i reakcja z wodą, prowadząca do zakwaszania środowiska i wytwarzania jonów CO_3^{2-} , które są stabilne w warunkach wysokiego pH zawiesiny. W tej fazie, pomimo wzrostu ilości CO_2 , nie

obserwowano więc jego wiązania (pozioma linia w obszarze A). Jony wapnia Ca^{2+} , powstające z hydratacji i rozpuszczania portlandytu, zawartego w odpadzie, dopiero po powstaniu jonów węglanowych natychmiast wchodziły z nimi w reakcję, czemu towarzyszyło przejście z fazy ciekłej jonów wapnia Ca^{2+} do fazy stałej (kalcyt CaCO₃). Ze względu na wysokie stężenie jonów wapnia w roztworze, reakcja ta za-chodziła stosunkowo szybko

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$$

Przyjmując, że reakcja jonów Ca²⁺ z dwutlenkiem węgla jest reakcją II rzędu, na podstawie danych eksperymentalnych, obliczono stałą szybkości reakcji na etapie A. Dla warunków prowadzonego eksperymentu wyniosła ona $k_A = 1.54 \cdot 10^{-3} \cdot s^{-1}$.

Etap B (rys. 1)

Po wyczerpaniu się jonów Ca^{2+} , pochodzących z portlandytu, następowało gwałtowne spowolnienie reakcji wiązania CO_2 . Na etapie B głównym donatorem jonów wapniowych były gliniany wapniowe i gliniany wapniowe z wbudowanymi w strukturę anionami siarczanowymi SO_4^{2-} (ettryngit) zawarte w odpadzie. Przechodzenie jonów wapniowych z ettryngitu do roztworu było uwarunkowane przede wszystkim szybkością hydratacji tego typu związków. Obniżenie pH spowodowało zwiększenie szybkości aktywacji (rozpuszczania) ettryngitu i przechodzenie jonów Ca^{2+} do roztworu. Etap karbonatyzacji ettryngitu wywierał decydujący wpływ na całkowitą szybkość procesów sekwestracji CO_2 na etapie B

 $\frac{1/3(3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot 3\text{CaSO}_4\cdot 32\text{H}_2\text{O})_{(s)} + \text{CO}_2 \rightarrow \text{CaCO}_{3(st)} + \text{CaSO}_4\cdot 2\text{H}_2\text{O}_{(st)} + 2/3\text{Al}(\text{OH})_{3(\text{bezp})} + 23/3\text{H}_2\text{O}$

Efektem reakcji było wiązanie CO₂ w postaci wytrącanego kalcytu.

Reakcja dwutlenku węgla z ettryngitem w obszarze B była reakcją II rzędu, gdyż sposób "indukowania" aktywnych jonów wapniowych nie wpływał na jej rząd reakcji.

Dla warunków prowadzonego eksperymentu stała szybkości reakcji tego etapu procesu wyniosła $k_B = 0.72 \cdot 10^{-3} \cdot s^{-1}$.

Etap C (rys. 1)

Po wyczerpaniu się jonów wapniowych, które przeszły do roztworu w wyniku hydratacji ettryngitu i ich przereagowaniu z jonami węglanowymi, następowało wyhamowanie procesu sekwestracji CO_2 ze względu na "deficyt" jonów wapnia Ca^{2+} w zawiesinie. Oddziaływanie wody powodowało indukowanie hydrolizy i rozkład krzemianów wapnia zawartych w odpadach. Efektem hydrolizy było uwalnianie jonów wapnia i powstawanie, reagującego w tych warunkach z dwutlenkiem węgla, wollastonitu – CaO·SiO₂.

$$2\text{CaO} \cdot \text{SiO}_{2(s)} + \text{H}_2\text{O} \rightarrow \text{CaO} \cdot \text{SiO}_{2(s)} + \text{Ca}^{2^+} + 2\text{OH}^-$$
$$\text{CaO} \cdot \text{SiO}_{2(s)} + \text{CO}_2 \rightarrow \text{CaCO}_{3(s)} + \text{SiO}_{2(s)}$$

W wyniku rekcji krzemianów wapnia z wodą były uwalniane grupy wodorotlenowe (OH⁻), co powodowało wzrost zasadowości roztworu zawiesiny. Rozkład krzemianów

i innych faz mineralnych powodował uwalnianie jonów wapnia, które w warunkach wysokiego pH reagowały z dwutlenkiem węgla

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$$

Procesy indukowania równowagi jonowej w zawiesinie nie miały wpływu na rzędowość reakcji wiązania dwutlenku węgla z uwalnianymi jonami wapnia. Obliczona stała szybkości dla tego etapu sekwestracji wyniosła $k_c = 3,3 \cdot 10^{-4} \cdot \text{s}^{-1}$.

Etap D (rys. 1)

W obszarze tym, w wyniku braku faz mineralnych zawierających jony wapnia i obniżenia pH roztworu zawiesiny, wynikającego ze zwiększenia stężenia jonów HCO_3^- , nastąpiło wyhamowanie procesu.

W warunkach prowadzonego procesu, w związku z deficytem rozpuszczalnych związków zawierających związki wapnia, została ograniczona możliwość wiązania CO_2 z jonami CO_2^{2+} i wytrącania się kalcytu $CaCO_3$.

Nadmiar wprowadzanego dwutlenku węgla powodował przesunięcie stanu równowagi reakcji

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$$

w kierunku rozpuszczania wytrąconego kalcytu

$$CaCO_{3(s)} + CO_2 + H_2O \rightarrow Ca^{2+} HCO_3^{-} + H^+$$

Dla warunków prowadzonego procesu obliczona stała równowagi sekwestracji dwutlenku węgla z zawiesiną wodno-popiołową w obszarze D wyniosła $k_D = 1,2 \cdot 10^{-4} \cdot s^{-1}$.

3. MODEL KINETYCZNY MINERALNEJ SEKWESTRACJI CO₂ W ZAWIESINIE POPIOŁOWO-WODNEJ

W celu określenia szybkości reakcji zachodzących na poszczególnych etapach procesu, należało ustalić postać równania kinetycznego danej reakcji i wyznaczyć wartość stałej szybkości, korzystając z wartości doświadczalnych dla wybranego rodzaju odpadów. Reakcja może być *n*-tego rzędu, ale na ogół nie przekracza drugiego. W omawianym modelu wykorzystano metodę całkową oraz posłużono się zróżniczkowanymi wynikami doświadczalnymi.

Jeśli reakcja przebiega jako reakcja I, II lub III rzędu to jej szybkość opisuje jedno z równań kinetycznych:

$$-\frac{\mathrm{d}c_A}{\mathrm{d}t} = k_1 c_A \,\,(\mathrm{dla \,\,reakcji \,\,I \,\,rzędu}) \tag{1}$$

$$-\frac{\mathrm{d}c_A}{\mathrm{d}t} = k_2 c_A^2 \quad \text{(dla reakcji II rzędu)} \tag{2}$$

$$-\frac{\mathrm{d}c_A}{\mathrm{d}t} = k_3 c_A^3 \text{ (dla reakcji III rzędu)}$$
(3)

Poszczególne równania należy rozwiązać z warunkiem początkowym, że stężenie c_A jest funkcją stężenia CO₂ w czasie *t*. Po scałkowaniu równań (1), (2) i (3) otrzymuje się następujące zależności stężenia CO₂ od czasu:

$$\ln c_A = \ln c_{A0} - kt \quad \text{(dla reakcji I rzędu)} \tag{4}$$

$$\frac{1}{c_A} = \frac{1}{c_{A0}} + k_2 t \quad \text{(dla reakcji II rzędu)}$$
(5)

$$\frac{1}{c_A^2} = \frac{1}{c_{A0}^2} + 2k_3 t \quad \text{(dla reakcji III rzędu)} \tag{6}$$

Określenie rzędu reakcji polega na sporządzeniu trzech wykresów: $\ln c_A = f(t)$, $1/c_A = f(t)$ oraz $1/c_A^2 = f(t)$. Jeżeli jeden z tych wykresów jest linią prostą, to rząd reakcji odpowiada wykładnikowi potęgowemu w równaniu określającym jej szybkość – równania (4), (5), (6). Potwierdziły one, że na każdym etapie A, B, C i D, zachodzące reakcje wiązania CO₂ były reakcjami II rzędu (punkty doświadczalne układają się na linii prostej).

Wyniki danych doświadczalnych przedstawiono na rysunkach 2-4.

Rys. 2. Zależność zmiany ilości pochłoniętego CO₂ w funkcji czasu dla etapu A **Fig. 2.** Dependence of the absorbed CO₂ on time for area A

Rys. 3. Zależność zmiany ilości pochłoniętego CO₂ w funkcji czasu dla etapu B
Fig. 3. Dependence of the absorbed CO₂ on time for area B

Rys. 4. Zależność zmiany ilości pochłoniętego CO₂ w funkcji czasu dla etapu C Fig. 4. Dependence of the absorbed CO₂ on time for area C

Rys. 5. Zależność zmiany ilości pochłoniętego CO₂ w funkcji czasu dla etapu D **Fig. 5.** Dependence of the absorbed CO₂ on time for area D

Szybkość reakcji sekwestracji dwutlenku węgla jest reakcją II rzędu w każdej fazie procesu i jest opisana równaniem kinetycznym (2), z którego można obliczyć stałą szybkości reakcji na etapie n (k_n) przy założeniu, że C_n – stężenie CO₂ w czasie t

$$k_n = \frac{C_{n0} - C_n}{(C_n C_{n0})t}, \, \mathrm{s}^{-1} \tag{7}$$

przy uwzględnieniu warunków początkowych badań

$$C_{n(t=0)} = C_{n0}; C_{n(t)} = C_n$$

 $t_0 = 0; t = t$

podstawiając do równania (2):

$$C_n = \frac{n_{(\max)} - n_{(s)}}{V} \tag{8}$$

$$C_{n0} = \frac{n_{(\max)}}{V} \tag{9}$$

gdzie:

V – objętość reaktora; V = const., dm³; k – stała szybkości reakcji sekwestracji, s⁻¹; $n_{(max)}$ – początkowa (maksymalna) liczba moli CO₂ w reaktorze;

 $n_{(s)}$ – liczba moli CO₂ związanego w czasie sekwestracji (w czasie *t*);

$$n_{(s)} = \frac{m_{(\max)} - m_{(t)}}{M_{CO_2}}$$
(10)

gdzie $m_{(t)}$ – masa CO₂ w reaktorze w czasie t, g;

$$M_{\rm CO_2} = 44,04 \ \frac{g}{\rm mol}$$

otrzymuje się

$$n_{(s)} = n_{(\max)} \left(1 - \frac{n_{(\max)}}{1 + n_{(\max)} k_n t} \right)$$
(11)

Wzór (11) pozwala na obliczanie ilości związanego CO₂ dla określonych parametrów i warunków prowadzenia procesu sekwestracji.

Ten sam rezultat można otrzymać metodą rachunkową. W tym celu podstawia się doświadczalne wartości stężenia w zależności od czasu do scałkowanego równania kinetycznego i oblicza odpowiednie stałe szybkości. Jeżeli reakcja przebiega zgodnie z mechanizmem założonego rzędu, to obliczone wartości stałych szybkości są stale w granicach błędu pomiaru.

Wyniki przykładowych obliczeń stałych k dla poszczególnych etapów procesu (A, B, C i D), ustalonych na podstawie wszystkich danych doświadczalnych i trzech analizowanych równań, zestawiono w tabeli 1.

Tabela 1.	Stałe szybkości	reakcji dla pos	zczególnych	etapów proce	su sekwestracji

<i>k</i> dla etapu A	<i>k</i> dla etapu B	<i>k</i> dla etapu C	<i>k</i> dla etapu D
0,00146	0,00103	0,00051	0,00021
0,00154	0,00109	0,00049	0,00021
0,00159	0,00110	0,00047	0,00020
0,00165	0,00111	0,00046	0,00020
0,00171	0,00112	0,00045	0,00018
0,00176	0,00113	0,00044	0,00018
0,00179	0,00113	0,00043	0,00014
0,00183	0,00113	0,00042	0,00015
0,00186	0,00113	0,00041	0,00012
0,00186	0,00112	0,00040	0,00012
0,00190	0,00111	0,00039	0,00011
0,00193	0,00110	0,00036	0,00011
0,00195	0,00108	0,00036	0,00010

Należy zwrócić uwagę, że dla etapu A i B stałe szybkości wzrastały w miarę postępu reakcji, a dla etapu C i D – malały. Świadczy to o zróżnicowaniu szybkości procesu, prawdopodobnie powstającym w związku z rodzajem reagenta w zawiesinie popiołowo-wodnej.

PODSUMOWANIE

Mineralna sekwestracja dwutlenku węgla w zawiesinach wodno-popiołowych odpadów z kotłów fluidalnych z Elektrociepłowni Tychy SA jest procesem złożonym, w którym, oprócz etapów związanych ze zjawiskami fizycznymi (dyfuzja i rozpuszczanie gazowego CO₂, rozpuszczanie i migracja z faz mineralnych jonów wapnia Ca²⁺, zarodkowanie i wytrącanie węglanów), zachodzą reakcje chemiczne związane z powstawaniem jonów węglanowych i wodorowęglanowych oraz ich reakcjami z jonami wapnia, które powodują zmiany pH układu reakcyjnego (Uliasz-Bocheńczyk, Cempa 2010).

Czynnikiem determinującym szybkość całego procesu są dyfuzja i rozpuszczanie gazowego CO_2 w zawiesinie oraz szybkość uwalniania jonów wapniowych z faz mineralnych, zawartych w odpadach do roztworu wodnego zawiesiny. Zjawiska te nie wpływają jednak na charakter reakcji chemicznych związanych z sekwestracją dwutlenku węgla w zawiesinach popiołowo-wodnych. Na każdym etapie wiązania CO_2 z zawiesiną odpadów, jest to reakcja II rzędu z jonami wapnia (Ca^{2+}), prowadząca do powstawania kalcytu ($CaCO_3$).

Wykonane badania i opracowany model kinetyczny procesów i reakcji zachodzących podczas wprowadzania gazowego dwutlenku węgla do zawiesin wodnych odpadów, pozwala na zdefiniowanie parametrów procesowych sekwestracji CO_2 dla wielu odpadów przemysłowych, w których występuje podobny skład fazowy, jak w popiołach z kotłów fluidalnych.

Literatura

- 1. Baciocchi R., Costa G., Polettini A., Pomi R., Prigiobbe V. (2009): Comparison of different reaction routes for carbonation of APC residues. Energy Procedia 1, s. 4851–4856.
- Back M., Kühn M., Stanjek H., Peiffer S. (2008): Reactivity of alkaline lignite fly ashes towards CO₂ in water. Environmental Science & Technology 42, s. 4520–4526.
- Gawlicki M. (2007): Odpady jako surowce w procesach wytwarzania spoiw hydraulicznych. W: Zrównoważone wykorzystanie zasobów w Europie – surowce z odpadów. Praca zbiorowa pod red J. Kudełki, J. Kulczyckiej i H. Wirtha. Kraków, Wydaw. IGSMiE PAN.
- Giergiczny Z. (2006): Rola popiołów lotnych wapniowych i krzemionkowych w kształtowaniu właściwości współczesnych spoiw budowlanych i tworzyw cementowych. Monografia nr 325. Kraków, Wydaw. Politechniki Krakowskiej.
- Huijgen W.J.J., Comans R.N.J. (2006): Carbonation of steel slag for CO₂ sequestration: Leaching of products and reaction mechanisms. Environmental Science and Technology 40, s. 2790–2796.
- IPCC (2007): Special Report on Carbon Dioxide Capture and Storage, part 7. Mineral Carbonation and Industrial Uses of Carbon Dioxide. Coordinanating Lead Author: Marco Mazzotti.
- Lackner K.S., Butt D.P., Wendt C.H. (1997): Progress of binding CO₂ in mineral substrates. Energy Conversion and Management Vol. 38, s. 259–264.
- Lackner K.S., Wendt C.H., Butt D.P., Joyce L.E., Sharp D.H. (1995): Carbon dioxide disposal in carbonate minerals. Energy Vol. 20, No. 11, s. 1153–1170.
- 9. Łączny M.J. (1983): Model emisji zanieczyszczeń ze składowisk odpadów energetycznych do wód podziemnych. Oddz. Katowice Warszawa, Instytut Kształtowania Środowiska.

- 10. Łączny M.J. (2002): Niekonwencjonalne metody wykorzystywania popiołów lotnych. Katowice, GIG.
- 11. Łączny M.J., Dąbrowska L., Kubicki P. (1995): Składowanie wodnych zawiesin popiołów lotnych (emulgatu). Częstochowa, Politechnika Częstochowska.
- 12. Seifritz W. (1990): CO₂ disposal by means of silicates. Nature 345, s. 486.
- Uliasz-Bocheńczyk A. (2008): Możliwości zastosowania popiołów lotnych ze spalania węgla kamiennego w kotłach wodnych do sekwestracji CO₂ w drodze mineralnej karbonatyzacji. Rocznik Ochrona Środowiska t. 10, s. 567–574.
- 14. Uliasz-Bocheńczyk A. (2009): Mineralna sekwestracja CO₂ w wybranych odpadach. Studia, Rozprawy, Monografie 153. Kraków, Wydaw. IGSMiE PAN.
- Uliasz-Bocheńczyk A., Cempa M. (2010): A thermodynamic model of CO₂ sequestration in aqueous solutions of selected waste. Gospodarka Surowcami Mineralnymi t. 26, z. 4, s. 119–132.
- 16. Uliasz-Bocheńczyk A., Mokrzycki E. (2009): CO₂ sequestration with the use of fly ash from hard coal and lignite combustion. Slovak Geological Magazine, spec. issue, s. 19–22.
- 17. Uliasz-Bocheńczyk A., Piotrowski Z. (2008): Wpływ mineralnej karbonatyzacji na wymywalność zanieczyszczeń. Ochrona Środowiska t. 11, cz. 1, s. 1083–1094.
- Uliasz-Bocheńczyk A., Mokrzycki E., Piotrowski Z., Pomykała R. (2007): Składowanie CO₂ z zawiesinami popiołowo-wodnymi pod ziemią. Kraków, Wydaw. IGSMiE PAN.

Recenzent: prof. dr hab. inż. M. Jacek Łączny