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ABSTRACT  

Purpose 

This study focuses on one of the key design aspects of mine ventilation fans, i.e. the selection of an appropriate aerofoil 

blade profile for the fan blades in order to enhance the energy efficiency of axial flow mine ventilation fans, using CFD 

simulations. 

Methods 

Computational simulations were performed on six selected typical aerofoil sections using CFD code ANSYS Fluent 6.3.26 

at angles of attack varying from 0 to 21 at an interval of 3 and at Reynolds number Re = 3 × 106, and various aerody-

namic parameters, viz. coefficients of lift (Cl) and drag (Cd) as a function of angle of attack (α) were determined to assess 

the efficiency of the aerofoils. 

Results 

The study revealed that the angle of attack has a significant effect on the lift and drag coefficients and stall condition oc-

curred at α values of 12 and 15 in most of the aerofoils. Based on the criterion of higher lift to drag ratio (Cl/Cd), a blade 

profile was chosen as the most efficient one for mine ventilation fans. 

Practical 

implications 

This study forms a basis for selecting appropriate blade profiles for the axial flow fans used for ventilation in mining  

industry. 

Originality/ 

value 

The application of an appropriate aerofoil blade profile will impart energy efficiency to the mine ventilation fans and 

thereby result in energy saving in mine ventilation. 

Keywords  

mine ventilation, axial flow fan, energy efficiency, aerofoil, lift and drag, CFD 

1. INTRODUCTION 

Mine ventilation fans run 24 hours a day and throughout 

the year for maintaining a comfortable working environment 

for the miners working below ground. Mostly, conventional 

aluminium alloy bladed fans are used for underground mine 

ventilation, which are neither properly designed nor appro-

priately selected to suit the desired condition. As a result, the 

consumption of electricity during their operation constitutes 

the largest component of the operating cost for mine ventila-

tion and accounts for one third of a typical underground 

mine's entire electrical power cost (Vergne, 2003). Belle 

(2008) has reported that the consumption of electricity by the 

main ventilation fan of a major mining company alone can be 

in the region of 120 MW. Therefore, ventilation is undoubt-

edly the most significant cost component of any underground  

mine and a major part of this is made up by the main mine 

fans. The electric power consumption profile in Polish mines, 

reported by Krzystanek and Wasilewski (1995), revealed that 

the mine fans together with dewatering pumps and compres-

sors that operate continuously consume over 40% of the total 

electrical energy consumption of the mines and out of which 

14% is consumed by the main fans itself.  

In this energy crunch world, the mining industry is facing 

the challenges of increasing energy costs. Therefore, investi-

gations are ongoing and more focus is being given to reduc-

ing energy consumption in the ventilation systems. Enhanc-

ing energy efficiency is one of the alternatives for minimizing 

energy consumption in any system. In mine ventilation, ener-

gy consumption can be reduced by improving efficiency with 

the suitable design of ventilation fans. The design and selec-

tion of the ventilation fans are of foremost importance with 
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regards to operation and energy consumption. Furthermore, 

improvement in overall ventilation system efficiency can be 

achieved by reducing wasteful air power and enhancing fan 

efficiency. It is obvious that the power consumption will be 

less if the fan efficiency is more and vice versa (Sharma, 

2002). The power consumption in fans depends to a large 

extent on the various losses involved, viz. impeller friction 

loss, entry loss, shock loss, clearance loss and diffuser loss, 

and the high losses in fans which are attributed to poor de-

signs (Eck, 1973). Sen (1997) observed that the excess power 

consumption in axial flow main mine ventilation fan occurs 

because of the unrefined design approach, careless selection 

and incorrect installation of the fan. According to Sen (1997),  

a combination of aerodynamic, mechanical, electrical, struc-

tural and operational factors are involved in any overall opti-

mization exercise, i.e. attainment of high fan efficiency or 

minimum power consumption. According to Hustrulid and 

Bullock (2001), the main reasons for very poor efficiency of 

old design colliery fans are due to poor aerodynamic design, 

improper fan selection and poor aerodynamics at the fan site, 

which are the root causes that yield static efficiencies below 

50%. Therefore, enhancing energy efficiency in mine fans by 

minimizing various losses is an important facet of energy 

saving and it is mainly governed by proper design of the 

ventilation fans. The design of fan blades constitutes the most 

significant feature of the fans. Belle (2008) has reported that 

a 10% increase in main fan efficiency with a 10% reduction  

in electricity consumption may result in a saving of 10.81 MW 

of electricity per annum; this would have a net present benefit 

of US$ 16.08 million over 10 years. Several other approach-

es, viz. use of fan blades made of composite material such as 

FRP (fibreglass reinforced plastic), application of variable 

speed drives and the ventilation-on-demand (VOD) concept 

have also been tried in order to reduce energy consumption in 

ventilation fans (Mishra, 2004; Panigrahi, Mishra, Divaker, 

& Sibal, 2009).  

The shape of the blades, which are of aerofoil sections in 

the case of axial flow fans, plays an important role in the 

performance of the fans and fan efficiency is greatly depend-

ent on the profile of the blades. Therefore, there is a scope for 

improving energy efficiency by reducing losses and enhan-

cing the efficiency of fans by using aerodynamically de-

signed fan blades made of suitable material. From this point 

of view, the design of mine fan blade profiles with suitable 

aerofoil section is very much desired. Nowadays, computa-

tional fluid dynamics (CFD) is widely used in the field of 

aerodynamics for design and analysis of aerospace vehicles. 

Simulation of airflow around the aerofoil sections using CFD 

has been studied by several researchers (Kieffer, Moujaes & 

Armbya, 2006; Eleni, Athanasios, & Dionissios, 2012; Raja-

kumar & Ravindran, 2012; Bai, Sun, Lin, Kennedy, & Wil-

liams, 2012). Rumsey and Ying (2002) reported CFD capa-

bility in predicting surface pressures, skin friction, lift, and 

drag with reasonably good accuracy at angles of attack below 

stall in high-lift flow fields.  

Keeping this in mind and with a broader aim of reducing 

energy consumption in mine ventilation fans, numerical si-

mulations of the aerodynamic effects of different angles of 

attack on the selected aerofoil sections have been carried out 

in this study in a turbulent Reynolds number flow using the 

k-ε turbulence model. The aerodynamic characteristics of the 

aerofoil sections viz. lift and drag coefficients at various 

angles of attack are determined for selecting a suitable profile 

for the axial flow mine ventilation fan blades giving the high-

est lift to drag ratio.  

2.  GENERAL AERODYNAMICS OF AXIAL FLOW 

FANS 

A fan is simply a machine which develops the pressure 

necessary to produce the required airflow rate and overcome 

flow resistance of the system by means of a rotating impeller 

using centrifugal or propeller action, or both. The axial flow 

fans are commonly used in mine ventilation in lieu of centri-

fugal fans due to high efficiency, compactness, non-overlo-

ading characteristics, development of adequate pressure, etc. 

(Misra, 2002). The axial flow fan in its simplest form as 

diagrammatically shown in Figure 1 incorporates a rotor, 

which consists of a hub fitted with aerofoil section blades in  

a radial direction. The blades or vanes which constitute the 

main component of axial flow fan are the surfaces that work 

by means of dynamic reaction on the air and develop positive 

air pressure during their rotation due to the development of 

lift force. The forces acting on a typical aerofoil section of an 

axial flow fan blade are shown in Figure 2. The lifting force 

acts at right angles to the air stream and the dragging force 

acts in the same direction of the air stream and is responsible 

for losses due to skin friction.  

 

Fig. 1. The schematic of axial flow fan (Vutukuri & Lama, 1986)  

 

Fig. 2. Forces acting on a typical aerofoil section of axial flow fan blade 

The efficiency of axial flow fans is greatly dependent on 

the profile of the blade, and the aerodynamic characteristics 

of the fan blades are strongly affected by the shape of the 

blade cross section. The cross section of fan blades is of  
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a streamlined asymmetrical shape, called the blade’s aerody-

namic profile and is decisive when it comes to blade perfor-

mance. Even minor alterations in the shape of the profile can 

greatly alter the power curve and noise level. Therefore, it is 

essential to choose an appropriate shape with great care, in 

order to obtain maximum aerodynamic efficiency. An aero-

dynamic profile with optimum twist, taper and higher lift-

drag ratio can provide total efficiency as high as 85–92%. 

The axial flow fan blades are of aerofoil sections and the idea 

behind using aerofoil blades is to maintain the proper stream-

lining of air to reduce losses caused due to form drag as well 

as from strength considerations (Misra, 2002). The blade 

performance characteristics may be predicted from the aero-

dynamic characteristics such as lift and drag coefficients of 

the chosen aerofoil section and given by the following equa-

tions:  

Cl = 

AV
2

1

L

2

 (1) 

Cd = 

AV
2

1

D

2

 (2) 

where Cl is the coefficient of lift, Cd is the coefficient of drag, 

L is the lift force, D is the drag force, ρ is the density of air, V 

is the velocity of undisturbed airflow and A is the blade refe-

rence area. 

The aerodynamic lifting force is a vital component and 

must be much greater than the drag component. Since lift 

contributes to the head generated by the fan and the drag 

causes loss due to skin friction in the wake behind the vane, 

the profile offering higher L/D ratio is considered more effi-

cient (Misra, 2002). Maximum lift to drag provides a combi-

natory measure of the performance of the aerofoil and, there-

fore, the Cl/Cd curve can be likened to the efficiency charac-

teristic of a fan. In the case of mine ventilation fans, an 

aerofoil profile generating high lift coefficient and offering 

high lift to drag ratio is needed for minimizing losses, pro-

ducing high head and improving the efficiency of the fan 

provided it fulfils the other constraints like economy, change 

in mine resistance over time and other factors. These re-

quirements are better fulfilled by the non-symmetrical aero-

foils and are, therefore, commonly preferred for fan blades 

than symmetrical ones.  

The lift and profile drag of the aerofoil shaped blades, 

when move through air, vary with the structure of the aerofoil 

and variations in the angle of attack (α). The angle of attack 

is the angle between the velocity vector and the chord line of 

the aerofoil (Figure 2). As the angle of attack increases, the 

coefficient of lift increases in a near-linear manner. However, 

at an angle of attack usually between 12 and 18°, breakaway 

of the boundary layer occurs on the upper surface. This caus-

es a sudden loss of lift and an increase in drag, known as stall 

condition. In this condition, the formation and propagation of 

turbulent vortices causes the fan to vibrate excessively and to 

produce additional low frequency noise (McPherson, 1983).  

The aerodynamic design of axial flow fans is a very com-

plex process and mainly consists of designing two-

dimensional blade sections at various radii. Over the past few 

decades, lots of effort has been put in to aerodynamic im-

provements of mine fans. Advances in aerodynamic design, 

which incorporate aerofoil section blading with lower aspect 

ratios, higher solidities and higher stagger angles have led to 

an increase in static-pressure rise. In addition to aerodynamic 

improvements, the use of improved materials and advanced 

mechanical design techniques also had a significant contribu-

tion. In conventional aluminium alloy bladed mine fans, their 

cross section barely matches a suitable aerofoil geometry that 

can develop sufficient lift and minimal drag forces. Moreo-

ver, the roughness of the blade surface considerably increases 

the losses. As a result, they may not reach the desired effi-

ciency and cause a loss of energy. Eckert (1953) found that 

unmachined cast-iron blades give an efficiency ~10% lower 

than machined blades. Hence, careful smoothening of the 

blade surfaces is essential to obtain better fan efficiency. 

3. CFD ANALYSIS OF THE AEROFOIL SECTIONS 

In this study, the CFD package ANSYS Fluent 6.3.26 is 

used to perform the numerical simulation of airflow around 

the selected aerofoil sections. Fluent solvers are based on the 

finite volume method in which the domain is discretized into 

a finite set of control volumes (or cells). It solves conserva-

tion equations for mass and momentum to determine the 

pressure distribution and therefore fluid dynamic forces act-

ing on the wing as a function of time. Six aerofoil sections, 

viz. EPPLER 420, EPPLER 544, EPPLER 855, FX 74 CL5 

140, NACA 747A315 and NACA 64(3)-418 have been 

chosen based on an extensive literature review for 2-D 

simulation to select a suitable aifoil section for the blades of 

axial flow mine ventilation fans. Most of these aerofoils are 

used in aeroplanes, wind turbines, high velocity rotors, sail-

planes and rotorcrafts etc.  

3.1. Geometry creation and meshing 

The aerofoil geometries of the chosen aerofoils have been 

created with the coordinates obtained from the airfoil coordi-

nates database (http://www.ae.illinois.edu/m-selig/ads/coord_ 

database.html) and shown in Figures 3.  

Gambit 2.4.6, the pre-processor of Fluent 6.3.26 is used to 

create the discretized domain or mesh with a far-field and 

near-field area and exported to Fluent for analysis. Computa-

tional domain or the far-field distance, which is about 15 

times the size of that of the chord length surrounding the 

centrally located aerofoil, is created for each profile. The 

domain boundary is set as a pressure-far-field and the surface 

of the aerofoil is set as wall. The meshing is done based on 

two-dimensional structured C-grid topology in x-y direction 

giving rise to average quadrilateral cells of about 160000 for 

all of the aerofoils. Figure 4 shows the meshed flow domain 

surrounding an aerofoil. The resolution of the mesh close to 

the aerofoil region is made greater for better computational 

accuracy. The height of the first cell adjacent to the surface of 

the aerofoils is set to 10
–5

, corresponding to a maximum y
+
 of 

approximately 0.2.  

 



 Journal of Sustainable Mining (2014) 13(1), 15–21 

 

18 

a)

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EPPLER 420 Airfoil

  
 

b)

 
-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EPPLER 544 Airfoil

 
 

c)

-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EPPLER 855 Airfoil

  
 

d)

 
-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FX74 CL5 140 Airfoil

 
 

e)

-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NACA 747A315 Airfoil

  
 

f)

-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NACA 64(3)-418 Airfoil

 

Fig. 3. The aerofoil geometries: a – EPPLER 420, b – EPPLER 544,  
c – EPPLER 855, d – FX 74 CL5 140, e – NACA 747A315  

and f – NACA 64(3)-418 

 

Fig. 4. The meshed flow domain surrounding aerofoil FX 74 CL5 140 

3.2.  CFD analysis for determination of lift and drag 

coefficients  

The aerofoils with meshed flow domain are solved with 

Fluent solver for determining the lift and drag coefficients 

giving various input parameters, such as airflow direction, flow 

velocity (15 m/s), air density (1.225 kg/m
3
), angle of attack, 

boundary conditions etc. The free air stream temperature is 

considered as 300 K, which is same as the environment tem-

perature and at this given temperature, the density and viscosi-

ty of the air is ρ = 1.225 kg/m
3 

and μ = 1.7894 × 10
–5

 kg/ms 

respectively. The flow is assumed to be incompressible. At 

this stage it is important to mention that the accuracy of 

CFD-based lift and drag prediction depends on the geometry 

representation, mesh size, flow solver, convergence level, 

transition prediction and turbulence model (Oskam & Sloo, 

1998). For the numerical modelling of fluid-structure interac-

tion problems, the choice of turbulence model is important.  

In this study the most widely used k-ε turbulence model is 

chosen for simulation due to its simplicity (Kieffer et al., 

2006; Hoo, Do, & Pan, 2005). This model, proposed by 

Launder and Spalding (1974), includes standard renormaliza-

tion-group (RNG) and realizable models. The Reynolds number 

for the simulations is considered as Re = 3 × 10
6
. The angles of 

attack (AoA) are varied from 0 to 21 at 3 intervals for all 

the aerofoils. Additionally, the coefficients of lift (Cl) and 

drag (Cd) are determined at different angles of attack. There-

after, the graphs of lift and drag coefficients versus angle of 

attack are plotted and the AoA corresponding to the maxi-

mum lift to drag ratio is determined. The pressure and veloci-

ty contours surrounding the aerofoil sections are also gener-

ated at the angle of attack which produces maximum lift to 

drag ratio for analysing the variation in air velocity and pres-

sure around the aerofoil.  

4. RESULTS AND DISCUSSION  

The static pressure and velocity plots showing the magni-

tude of the static pressure and air velocity in the flow field are 

obtained from the CFD simulation. The velocity and pressure 

distributions for all the aerofoils follow a similar pattern for 

all angles of attack. For instance, the contours of static pres-

sure and velocity vector which are coloured according to 

velocity magnitude across the aerofoil EPPLER 420 at  

a particular angle of attack (AoA) are presented in Figures 5 

through 8.  

 

Fig. 5. Contours of static pressure across aerofoil EPPLER 420 
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Fig. 6. Velocity vectors coloured by velocity magnitude across aerofoil 
EPPLER 420 

 

Fig. 7. Velocity vectors coloured by velocity magnitude at the leading edge 
of aerofoil EPPLER 420 

 

Fig. 8. Velocity vectors coloured by velocity magnitude at the trailing edge 
of aerofoil EPPLER 420 

As expected from the normal aerofoils, the static pressure 

contours show that the pressure is negative on the upper sur-

face and positive on the lower surface of the aerofoil, which 

is marked by a higher air velocity on the upper surface and 

lower velocity on the lower surface. The higher static pres-

sure at the lower surface of the aerofoil effectively pushes the 

aerofoil upwards and is responsible for the generation of lift 

force, which acts perpendicularly to the inflowing airstream. 

The variation in velocity, which is caused due to the curva-

ture of the aerofoil sections, can be clearly observed from the 

contours of velocity vectors which is coloured according to 

velocity magnitude. This phenomenon complies with Ber-

noulli’s equation. The air accelerates on the upper surface, as 

marked by an increase in the velocity magnitude and intensity 

of the colours of the velocity vectors. The reverse case is 

observed on the trailing edge of the aerofoil, i.e. the flow on 

the upper surface decelerates and converges with the flow on 

the lower surface. On the leading edge of the aerofoil (Figure 

7), a stagnation point can be seen where the velocity of flow 

is nearly zero.  

The variation of aerodynamic coefficients, i.e. the coeffi-

cients of lift (Cl) and drag (Cd) with angles of attack for all 

the aerofoil sections obtained from the CFD analysis are 

shown in Figure 9. The figure clearly shows that the lift and 

drag coefficients increase steadily with angles of attack. The 

coefficient of lift attains its maximum value at 12° AoA for 

airfoils EPPLER 855, FX 74 CL5 140 and NACA 64(3)-418, 

while it reachers its maximum of 15° for airfoils EPPLER 

420, EPPLER 544 and NACA 747A315. Beyond these an-

gles, the coefficient of lift decreases and the coefficient of 

drag decreases or remains relatively constant. At these AoAs, 

flow separation at the upper surface of the aerofoil sections 

can be observed. This indicates that the aerofoils begin to 

approach the “stall condition”.  
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Fig. 9. Aerodynamic coefficients vs. angle of attack for the aerofoils  
a – EPPLER 420, b – EPPLER 544, c – EPPLER 855, d – FX 74 CL5 140, 

e – NACA 747A315 and f – NACA 64(3)-418 

Table 1 summarizes the maximum Cl offered by the aero-

foil sections and their corresponding angle of attack values. 

In addition, the Cd corresponding to the maximum Cl and the 

Cl/Cd ratios, a measure used for prediction of efficiency of 

the aerofoil sections are presented in the table. The results 

indicate that the maximum Cl, which varies in the range of 

1.425–2.667 is obtained at AoAs ranging from 12 to 15 de-

grees in most of the aerofoil sections. Thereafter, the Cl falls 

and the region of high velocity begins to separate from the 

aerofoil surface at the trailing edge, giving rise to the “stall 

condition”. Aerofoil FX-74 L5 40 offers its highest Cl of 

2.667 at AoA of 12°. It can also be noticed that, comparative-

ly, NACA aerofoils offer a higher lift to drag ratio than the 

EPPLER aerofoils. Although the aerofoil NACA 747A315 

offered a lower Cl value of 1.858, due to the least correspond-

ing drag value of 0.1394, the Cl/Cd ratio, i.e. 13.329 happens 

to be the highest amongst all the aerofoils analyzed in this 

study. This indicates that the aerofoil NACA 747A315 offers 

the least resistance to the airflow and can provide better effi-

ciency to the fans. Therefore, the NACA 747A315 aerofoil 

section is the final choice for the fan blades.  

Table 1. Summarized CFD analysis results of the aerofoil sections 

Profile ID 
Angle of Attack 

(Degrees) 
Max. Cl 

Corresponding 
Cd 

Cl/Cd ratio 

E-420 15 2.553 0.551 4.633 

E-544 15 2.228 0.563 3.957 
E-855 12 1.934 0.408 4.740 

FX-74 L5 40 12 2.667 0.549 4.858 

NACA 747A315 15 1.858 0.139 13.367 
NACA 64(3)418 12 1.425 0.281 5.071 

5. CONCLUSIONS 

Minimizing various losses involved in fan system can im-

prove efficiency, which in turn facilitate savings in energy 

consumption. Fan efficiency is greatly dependent on the 

profile of the blade. The lift to drag ratio is a measure of the 

aerodynamic efficiency of the fan blade and an aerofoil with 

higher lift to drag ratio is considered as the most efficient 

one. This study presents CFD simulations of drag and lift 

coefficients of six different airfoils using the ANSYS Fluent 

software, which is a finite volume based commercial code, to 

help with the selection of an energy-efficient blade profile for 

mine ventilation fans. In this study, six different airfoil sec-

tions are considered for CFD simulations to study the effect 

of the variation of angle of attack on the aerodynamic coeffi-

cients. The results indicate that NACA aerofoils offer a high-

er lift to drag ratio and the aerofoil NACA 747A315 offers 

the highest Cl/Cd ratio of all at 13.329. Therefore, if the 

blades of axial-flow mine ventilation fans are made of NACA 

747A315 aerofoil section, it can provide better efficiency to 

the fans and help in minimizing energy consumption.  
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