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Abstract  
The process of gasification of carbonaceous fuels is a technology with a long-standing practice. In recent years, the technology has been 

extensively developing to produce energy or chemicals on the basis of obtained gas. Studies focused on the improvement of the 

gasification process aims at developing the process by increasing environmental safety, the efficiency and the possibilities to utilize 

various types of alternative fuels (post-consumer waste, various types of biomass waste, by-products and post-process residues, sewage 

sludge) independently or by co-gasification with coal. The choice of the gas purification system, the process operating parameters and 

introducing the necessary modifications to the existing technologies are essential steps while processing these kinds of feedstock, with 

regard to their individual characteristics. This paper discusses selected environmental aspects of the gasification and co-gasification of 

municipal solid waste, sewage sludge, various types of biomass waste and post-process residues. Selected alternative fuels are also 

characterized, focusing on the influence of their presence in the feedstock in terms of production and the emission of polychlorinated 

organic compounds, tars, heavy metals and toxic elements. 
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1. INTRODUCTION 

Gasification is a thermochemical process that converts 

carbonaceous fuels into a combustible gas consisting of CO, 

H2, CH4, CO2 and other substances in smaller amounts. Gase-

ous products may be used in combustion as well as the pro-

duction of many large volume chemicals such as ammonia, 

methanol, formaldehyde, OXO alcohols and aldehydes, for 

the synthesis of hydrocarbons by the Fischer-Tropsch process 

and in various carbonylation, hydrogenation or hydrotreating 

processes. 

Gasification is a process that facilitates using both solid 

and liquid fuels, this makes it possible to process post-

process and post-consumer waste of various types. Homoge-

neity of the physical and chemical properties of the fuel di-

rected to a gasification reactor is an advantageous feature, but 

even in the case of major differences in chemical composition 

or physical properties (for example, between particular com-

ponents of municipal waste fraction or in the co-processing), 

the technology permits obtaining far greater feedstock flexi-

bility than combustion (Nikodem 2007). The gasification of 

various types of waste (municipal or post-process), or co-

gasification with conventional fuel, is an effective method for 

recovering its energy content, and the resulting gas combus-

tion, as opposed to direct gas combustion, does not cause 

technological problems regarding the selection of a narrowly 

specialized stoker. 

Waste for which gasification is considered are mainly 

sewage sludge, biomass waste from wood, pulp and food 

industry or agriculture, municipal solid waste or their com-

bustible fractions, as well as heavy petroleum residues.  

Sewage sludge is a waste derived from the treatment of 

municipal and industrial wastewater. The content of individ-

ual substances in sludge is largely dependents on their origin. 

They mainly consist of organic (carbohydrates, proteins and 

fats) and mineral substances. Their common characteristic is 

a high content of moisture, which reduces the transport effi-

ciency and must be removed. Gasification requires the rela-

tively easy sewage sludge treatment prior to use – the process 

may be carried out even at 75% moisture content in the fuel, 

while sludge pyrolysis requires its reduction to about 15% 

(Manara, Zabaniotou 2012). Sewage sludge is subjected to 

dehydration (concentration, mechanical dehydration and 

drying) as well as stabilisation and hygienization (Kordylew-

ski 2005). Currently, a small amount of sludge is utilised by 

combustion or gasification, however, thermochemical pro-

cessing technologies are treated as a prospective method for 

sewage sludge usage. A characteristic feature of sewage 

sludge as fuel is high content of volatile matters, as well as 
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nitrogen and heavy metals. Caloric value of dried sewage 

sludge is 12–14 MJ/kg (Kowalik 2000). 

Waste biomass is a group with widely varied composition 

and physical properties. Biomass waste can be classified 

according to origin (plant, animal) or structures which are 

dominant (cellulose, lignin, fats, wax or albumens). Biomass 

wood waste (sawdust, shaving), straw and paper industry 

waste, in which cellulose structures are dominant, are also 

recognized as fuel. The prevalence of small-scale systems for 

gasification and co-gasification of lignin and cellulose bio-

mass, and the results of research papers devoted to biomass 

gasification and co-gasification (Van der Drift, Van Doorn, 

Vermeulen 2001; Myren et al. 2002; Paasen, Kiel 2004; Pinto 

et al. 2007, 2009; Abu El-Rub, Bramer, Brem 2008; Mastel-

lone, Zaccariello, Arena 2010) indicate that the technology is 

effective and safe for the environment. Also pulp industry 

waste may be disposed of without posing further problems 

regarding the emissions of unwanted compounds. Some of 

them, such as “black liquor” – the precipitate formed as  

a result of the wood pulping process, due to the alkali content 

can be a catalyst for the reaction, and may allow more com-

plete utilization of the chemical energy contained in the co-

gasified fuel (Kuang et al. 2007; Jaffri, Zhang 2007; Zhan, 

Zhou, Wang 2010). 

Types of biomass waste other than wood are characterized 

by a generally higher content of chlorine, sulphur and ash 

(Paasen, Cieplik, Phokawat 2006). Some of them, especially 

the shells of different types of nuts and fruit seeds, due to the 

content of metal oxides having a catalytic activity, permit 

achieving higher grades of carbon conversion and gas pro-

duction yield during the co-gasification process with coal (Di 

Donato et al. 2011). Waste with a low content of cellulose 

and lignin, such as used fats or oil seed pomace, is fuel with 

different properties. The long chains of hydrocarbon frag-

ments contained in fats, especially with a large number of 

unsaturated bonds between carbon atoms, favour the for-

mation of large quantities of liquids and gas rich in hydrocar-

bons (Pinto et al. 2005; André et al. 2005). Due to the rela-

tively low reactivity and the lower gas yield, research focuses 

on processing feedstock rich in fats with the addition of cata-

lysts or their co-gasification with fuel containing metal  

oxides catalysing the reaction of hydrocarbons with a gasify-

ing medium (Pinto et al. 2005, 2009). 

Only a moderate part of research on gasification and co-

gasification of the biomass waste concerns animal waste. The 

high fat and heteroatoms content present in the tissues of 

animal organisms is the cause of large amounts of impurities. 

Depending on their type, this entails the need to expand node 

gas purification (Cascarosa et al. 2011). An essential aspect 

of the waste treatment of animal waste, as in the case of sew-

age sludge, is the microbiological risk. Therefore, thermo-

chemical processes of energy recovery contained in this type 

of waste are a prospective and desired direction of their dis-

posal. 

Plastic waste is another group of alternative fuels with dif-

ferent properties. The share of plastics in municipal waste 

from developed countries stands at around 8%. World pro-

duction increased from 1950 to 2008 from 1.5 million tonnes 

to 245 million tonnes (Biois… 2010). This involves the need 

to develop methods of disposal combined with the recovery 

of a portion of materials or energy used to produce them. 

Gasification technology of plastic waste, as a method of 

energy recycling is not sensitive to polymer changes occur-

ring under the influence of light, in contrast to the methods of 

material recycling. Gasification also does not require such 

thorough cleaning of waste, as in the case of chemical or 

material recycling. Taking into account the consumption of 

water and energy for material recovery or monomers recy-

cling and greenhouse gas emissions, gasification can be con-

sidered a relatively environmentally beneficial form of recy-

cling (The Environment… 2004). Plastics are present in mu-

nicipal solid waste in extremely varied sizes and forms, and 

therefore, the larger elements of the waste should be frag-

mented (to less than 5 cm diameter), while the films – should 

be subject to concentrating by concentration and clumping. 

Predominant part of plastic fractions from waste dumps is 

waste polyethylene that can successfully undergo gasification 

process (Chiemchaisri, Charnnok, Visvanathan 2010). Poly-

olefin waste provides a good feedstock for thermochemical 

processes because it consists almost exclusively of carbon 

and hydrogen, and typically contain small amounts of impuri-

ties and has a high calorific value (e.g. 43.5 MJ/kg of high 

density polyethylene and 44 MJ/kg of polypropylene) (The 

Environment… 2004; Kordylewski 2005). The share of pla-

stics in the fuel increases the amount of hydrocarbons and tar 

in the gas (Chiemchaisri, Charnnok, Visvanathan 2010; Pinto 

et al. 2012). The high content of halogens is also a major 

difficulty in the thermochemical processing of certain types 

of plastics. 

Heavy petroleum residue is a fuel with a relatively low re-

activity, so research on its gasification and co-gasification 

focuses on finding efficient catalysts that can enhance the 

conversion of the contained carbon (Zhan, Zhou, Wang 2010; 

Ohtsuka 2009; Revankar, Gokarn, Doraiswamy 1987). Heavy 

residue has a low volatile content compared with coal or 

biomass. It contains, however, large amounts of sulphur and 

heavy metals. The calorific value of heavy petroleum residue 

is 36.2 MJ/kg (Zhan, Zhou, Wang 2010). 

Fuel produced from mixed waste (municipal and industri-

al) is referred to collectively as Refuse Derived Fuel, RDF. 

Table 1 shows the characteristics of selected materials found 

in municipal waste. 

Table 1. Selected characteristics of municipal waste (Tillman 1991) 

Components C H O N Cl S 
Moisture 

[% mas.] 

Ash 

[% mas.] 

Com-
bustion 

heat 

[MJ/kg] 

Paper 33.0 4.6 33.0 0.1 0.13 0.21 16 13 12.7 

Plastics 56.4 7.8 8.1 0.85 3.0* 0.3 15 9 18–45 

Rubber and 
leather 

43.1 5.4 11.6 1.34 5.0 1.2 10 22 19.6 

Wood 41.2 5.0 35.0 0.24 0.1 0.07 16 3 16.2 

Fabric 37.2 5.0 27.1 3.1 0.3 0.3 25 2 15.3 

Garden waste 23.3 3.0 17.5 0.9 0.13 0.15 45 10 9.3 

Food waste 18.0 2.5 12.9 1.1 0.4 0.06 60 5 7.6 

* Depending on the type of plastic involved, 0–0.45 chlorine. 

The waste undergoes partial processing, so that the RDF 

fuel mixture has sufficient heating value and does not contain 

inert ballast, bulky waste, toxic substances, and other unde-

sirable elements during thermochemical processing. A typical 

procedure prior to the energetic use of waste is based on the 

following steps (Spliehoff 2010; Kordylewski 2005) 

 magnetic separation of ferrous and non-ferrous metals 
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 manual separation of non-combustible fractions and bulky 

components 

 mechanical sorting into fractions (using air or drum clas-

sifiers) 

 fragmentation 

 drying 

 concentration (pelleting or briquetting) 

An important issue in the case of gasification of RDF from 

municipal waste is the variable calorific value, density and 

moisture content of the fuel. Another aspect is the variable 

content of harmful elements and compounds. Industrial 

wastes are mostly homogenous – containing one type of 

waste with small variations in its composition. Preliminary, 

the processing of industrial waste for energy recycling does 

not require most of the steps followed regarding municipal 

waste. 

2. EMISSIONS OF POLYHALOGENATED ORGANIC 

COMPOUNDS 

The two elements belonging to the group of halogens most 

frequently present in municipal waste and sewage sludge are 

chlorine and fluorine. Both elements at an atomic level cause 

severe steel corrosion and react with a protective oxide layer 

on a metal surface (Bątorek-Giesa, Jagustyn 2009). Condi-

tions for gasification hinder the formation of molecular halo-

gen for hydrides, therefore by-products of gasification con-

taining halogens are mainly HCl and HF. The abovemen-

tioned compounds have a considerably lesser corrosion 

effect, however, they should be separated from the gas 

stream. The capture of these compounds is performed using 

conventional acid gas absorbents (e.g. calcium oxide). The 

content of chlorine in the form of chloride affects the melting 

point of some inorganic compounds. Creating eutectic salts 

with a low melting point results in binding fuel particles in 

the agglomerates. Fuel containing in its composition more 

than 0.5% chlorine are considered as highly slagging 

(Bątorek-Giesa, Jagustyn 2009). The most serious problem, 

however, is the formation of harmful chemicals classified as 

Persistent Organic Pollutants (POPs), particularly polychlo-

rinated furans, polychlorinated dibenzodioxins, polychlori-

nated biphenyls and hexachlorobenzene (Kołsut 2002). Some 

of polychlorinated dibenzodioxins (commonly referred to as 

dioxins) have a high toxicity to living organisms (2, 3, 7, 8 – 

tetrachlorodibenzodioxin is one of the most toxic compounds 

obtained by synthesis). Reducing the formation of polychlo-

rinated compounds and increasing their capture is particularly 

important in terms of environmental protection. 

It is assumed that the main source of the formation of dio-

xins in the thermochemical processing of waste is the fraction 

of plastics. Despite the currently increasing trend of good 

design with the widest possible use of materials prone to 

recycling, not all of the material used should be gasified. 

Polyolefine, polystyrene or polyethylene terephthalate waste 

can be processed without the risk of thermochemical emis-

sions of polychlorinated organic compounds when they pro-

vide a uniform flow of waste (e.g. energy recovery in produc-

tion plants). The content of halogens, especially chlorine, 

makes it difficult for the development of plastic fraction of 

municipal waste (processed consumer goods waste, are often 

heterogeneous in terms of material, and their removal during 

a typical work sorting – impossible) by gasification. Waste 

containing large amounts of chlorine also include rubber and 

processed tanned leather, as well as various animal biomass 

(e.g. food waste) and sewage sludge (Tillman 1991). 

Polychlorinated dibenzodioxins and polychlorinated 

dibenzofurans are emitted from combustion or gasification 

processes that are carried out at a temperature below 1200°C. 

These compounds are contained in fuel or formed by the 

rearrangement of chemical degradation products of chlorinat-

ed aromatic hydrocarbons or in heterogeneous reactions of 

hydrocarbons, occurring in the mixture of exhaust gas and fly 

ash, which are catalysed by copper compounds (Kołsut 

2002). For each of these mechanisms it is assumed that the 

formation of dioxins extends outside the furnace (at a tem-

perature range of 200–450°C). Dioxin precursors (in rear-

rangement, as well as de novo synthesis) are incompletely 

reacted carbon compounds contained in the fuel. One of the 

basic methods of reducing the formation of dioxins in the 

gasification process is, therefore, to operate the process at  

a high temperature or using a catalyst in order to achieve the 

complete conversion of hydrocarbons formed in the pyroly-

sis. Conesa, Fullana, Font (2005) in their study dedicated to 

the formation of dioxins during the thermochemical pro-

cessing of bone meal, compared the levels of concentration of 

polychlorinated dibenzodioxin (PCDDs) obtained during 

pyrolysis and combustion. During pyrolysis at a temperature 

above 1100°C, the resulting amounts of PCDD were greater 

than in the case of combustion at the same temperature, but 

below 850°C dioxin emission from pyrolysis was lower. 

Paasen, Cieplik and Phokawat (2006) compared the amount 

of harmful compounds formed secondarily in the process of 

gasification of sewage sludge and RDF which consisted of 

paper and plastic waste. Sewage sludge contained in the dry 

ash-free state contained 0.3% of chlorine and RDF contained 

1.5% of chlorine. The fuel was subjected to the air gasifica-

tion process in a reactor with a bubbling fluidized bed. For 

both fuels, dioxin content in the synthesis gas decreased sig-

nificantly when the gasification temperature was increased to 

above 800°C. During gasification of RDF at 725°C the gas 

contained 74.22 ng dioxin/m
3
, for gasification at 825°C the 

content decreased to 4.50 ng/m
3
. The content of dioxin in the 

gas produced during the gasification of sewage sludge was 

lower, and at 750°C amounted to 1.98 ng/m
3
. Increasing the 

gasification temperature by 100°C resulted in its reduction to 

0.38 ng/m
3
. The total content of polychlorinated dibenzodio-

xins and polychlorinated dibenzofurans in the gas produced 

from the gasification of sewage sludge at 750°C was 1.9 

ng/m
3
, and for RDF – 373.0 ng/m

3
. During the gasification of 

waste at a temperature above 800°C, the ratio of chlorine in 

the emerging HCl to chlorine contained in the fuel varies 

considerably and amounted to 9% of the sludge and 48% for 

the RDF. Tar produced during gasification of RDF also con-

tained much larger amounts of chloro-organic compounds. 

The chlorine content in the tar from the gasification of RDF 

was 4124 mg/m
3
, while the tar resulting from the gasification 

of sewage sludge was 56 mg/m
3
. 

Adlhoch et al. (2000) presented the composition and effi-

ciency recognized the harmful compounds produced second-

arily by the co-gasification of coal and municipal solid waste. 

Gasification was carried out by oxygen-enriched air in the 

High Temperature Winkler (HTW) demonstration plant with 
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a fluidized bed. In the resulting raw gas, chloride content 

amounted to 6.98 mg/m
3
 fluoride – less than 0.09 mg/m

3
, and 

the total content of polychlorinated dibenzodioxins and 

dibenzofurans – 0.012 ng/m
3
. Flue gases from the combus-

tion of the resulting gas contained 1.38 mg/m
3 
HCl, HF below 

0.02 mg/m
3 

and 0.002 ng/m
3 

polychlorinated dioxin and fu-

rans. The content of polychlorinated dioxins and furans at the 

same level (0.005 ng/m
3
) was observed in exhaust gas fol-

lowing the combustion of product gas from the gasification 

of post-consumer packaging films. Exhaust gases also in-

cluded 1.25 μg/m
3
 chlorinate and polychlorinated biphenyls 

and chlorophenols. Flue gases from the same plant, which 

was supplied thanks to the fraction of plastic waste from 

sorting contained 0.03 ng/m
3
 PCDD/PF, however, two times 

lower content of chlorophenols was observed and the total 

content of polychlorinated biphenyls, chlorobenzenes and 

chlorophenols was 0.99 μg/m (Adlhoch et al. 2000). Poly-

chlorinated dibenzodioxins and dibenzofurans, except for 

gas, were also included in the slag and dust. The authors 

determined the stream of PCDD/PF derived with the slag 

during an hour to be approximately equal to the stream of 

these compounds in the raw gas.  

Tanigaki, Manako and Osada (2012) studied the gasifica-

tion of municipal waste by oxygen-enriched air in the direct 

ash melting system. By obtaining carbon conversion rates at 

91.7 and 95.3% they observed PCDD/PF performance de-

crease. Increasing the conversion of hydrocarbons involved 

in the formation of dioxins can also be achieved by using 

high temperature entrained-flow gasifiers. Birgan, Matsumo-

to and Kitagawa (2012) subjected poultry manure (waste with 

a very high chlorine content) supercritical water gasification, 

and observed levels of dioxin concentration to be of a much 

lower level than the acceptable level of emission. Plasma 

gasification is also a prospective technology, particularly in 

the case of waste with a high content of halogens. Plasma is  

a state in which molecules or atoms are present in the gas and 

are partially ionized. High temperature resulting from the 

discharge provides the possibility of thermal degradation of 

organic compounds that do not decompose during conven-

tional gasification processes (including condensed aromatic 

hydrocarbons and heterocyclic compounds). Plasma gasifica-

tion leads to the significant reduction of emissions of dioxins 

and furans, and is recognized as the most environmentally 

friendly thermo-chemical treatment of waste. The most effec-

tive method to remove dioxins, regardless of the technology 

used, is captured by a specialized multi-stage adsorption filter. 

3. FORMATION OF TARS 

Tar is a mixture of aromatic hydrocarbons with a molecu-

lar weight greater than benzene. The amount of their for-

mation and composition is strongly dependent on the compo-

sition of the fuel or the fuel mixture directed to the process 

(Pinto et al. 2012). Alternative fuels, which additionally 

cause an increase in the yield of the tars, are mainly plastics, 

biomass waste rich in fats and sewage sludge. 

Polymers, which are the main component of plastics, con-

sist of repeating structure fragments, therefore, their thermal 

decomposition occurs with the release of large amounts of 

light hydrocarbons. The content of these compounds in gas, 

which are to be used for energy purposes, is desirable be-

cause it increases the calorific value. However, hydrocarbons 

form by side reactions of repolymerizing compounds of high-

er molecular weight including aromatic hydrocarbons. Gasi-

fication of plastics is thus linked to the formation of consid-

erable amounts of tar. Paasen, Cieplik and Phokawat (2006) 

compiled the results of experiments with the fuel-air gasifica-

tion of RDF (paper + plastics), and sewage sludge. The pro-

cess was carried out in a reactor with a bubbling fluidized bed 

at more than 800
o
C and at atmospheric pressure. The gas 

formed from RDF contained almost three times more tars 

precursors – ethylene and benzene (respectively: 4.6 mg/m
3
 

and 9309 mg/m
3
) and more than twice as much tar – 26.4 

mg/m
3
. The formation of large amounts of tar is one of the 

reasons that the co-gasification of plastic fractions of munici-

pal waste with other fuels is considered. Currently, many 

researchers focus on the beneficial aspects of co-gasification 

of plastic waste with wood biomass or energy crops and coal 

(Pinto et al. 2012; Chiemchaisri, Charnnok, Visvanathan 

2010; Adlhoch et al. 2000). In degradation of tars that are 

side products in the gasification process, increased gasifica-

tion temperatures (Brage et al. 2000; Li, Suzuki 2009; Anis, 

Zainal 2011), and the optimum flow rate of gasifying agent 

(Ledesma et al. 2000) is important. Obtained amounts of tar 

slighty decrease with decreasing process pressure  (Mayerho-

fer et al. 2011). A particularly high percentage reduction of 

tar is achieved with the addition of catalysts (Anis, Zainal 

2011). Guan et al. (2009) obtained gas free of tar through the 

use adding dolomite (at a mass ratio of steam to waste equal 

to 0.42 in 800°C at atmospheric pressure). In the same sys-

tem, without the use of a catalyst, raising the temperature to 

900°C resulted in a decrease in mass efficiency of tars to 

3.6%. 

Tars formed as by-products in the process of gasification 

plastics generally have low levels of heteroatoms and low 

polarity. A study focused on emissions from the gasification 

of plastic waste, published by the Environmental and Indus-

try Council and the Canadian Plastics Industry Association 

(2004) indicate a relatively high content of tars in the result-

ing gas. Both in the case of post-consumer packaging films, 

and the fractions of the plastic waste from sorting, about 6% 

of the carbon was contained in the feedstock. Resulting hy-

drocarbons do not contain large amounts of polar groups, 

thus the amount of carbon that remains in the effluent water 

from the process did not exceed 0.2%. Straka and Bučko 

(2009) subjected post-consumer tyre waste and coal to  

a steam air gasification process in a fixed bed reactor (at 

800°C and 2.7 MPa). During the gasification of tyre waste 

(mainly consisting of rubber, oil and soot) tar formed with  

a yield of 40.5% and when coal was processed the yield of tar 

was 17.5%. In the co-gasification of both materials, benefi-

cial effects of reducing the amount of generated tars were 

observed. The addition of 10% post-consumer tyre waste did 

not cause a noticeable change in the amount of tar generated 

(comparing to coal gasification only), but contained in its 

composition less oxygen functional groups. 

The formation of large quantities of tar in the gasification 
process also occurs during the processing of biomass waste 
containing fats (such as bagasse, plant oil, bone meal). Long 
hydrocarbon chains with unsaturated carbon-carbon bonds 
existing in fats may be subject to cyclization, dehydrogena-
tion and aromatization reactions, thereby forming aromatics. 
A significant content of fats in the waste of some types of 
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biomass makes the process of gasification inefficient enough 
due to the high yields of liquid products (Pinto et al. 2009). 
This type of waste may be subjected to co-gasification with 
other fuels in the appropriate proportion. André et al. (2005) 
determined that the addition of oil crops bagasse into conven-
tional fuel should not exceed 40%. Cascarosa et al. (2011) 
observed an increase in the efficiency of tar in a small (1%) 
addition of bone meal to coal. 

Considerable amounts of tars are also created in the air 

gasification process of sewage sludge (Phuphuakrat et al. 

2010; Chen, Namioka, Yoshikawa 2011; Adegoroye et al. 

2004). A characteristic feature of tars generated in the ther-

mal conversion of such waste is a high content of heteroa-

toms, especially nitrogen and oxygen. The main groups of 

compounds present in tar, containing nitrogen are cyanoaro-

matics and N-heterocyclic aromatic hydrocarbons (Chen, 

Namioka, Yoshikawa 2011), while oxygen compounds are 

predominated by phenol (Adegoroye et al. 2004). Paasen, 

Cieplik and Phokawat (2006) also observed that the tar from 

the gasification of sewage sludge, despite the high tempera-

ture process (850°C) and the presence of a gasifying agent 

contained a large quantity of primary tars that did not under-

go further reactions. 

The gas produced during the gasification process is sub-

jected to a further purification, this forms tar by so-called 

secondary methods, involving physical separation from the 

gas stream or chemical degradation. Particularly undesirable 

components include polycyclic aromatic hydrocarbons, con-

densing even at high temperatures and accumulating on the 

elements of the apparatus. In case of a relatively small con-

tent of tar in the gas, only physical methods are commonly 

used. Condensing tar particles are captured in various kinds 

of filters, separated in cyclones or absorbed in the selective 

solvent. Phuphuakrat et al. (2010) tested the effectiveness of 

removing tars from the gas by using a system composed of 

two venturi scrubbers and three sawdust absorbers. The re-

moval efficiency of polycyclic aromatic hydrocarbons by the 

scrubbing system amounted to 96.1%, and absorbers filled 

with sawdust stopped them completely. After passing through 

the tested system, the gas contained only light aromatics. The 

degradation of large amounts of tars can be achieved using 

chemical methods. Aromatic compounds are thermally or 

catalytically cracked or reformed with the participation of  

a gasifying agent. These reactions may be catalysed by vari-

ous substances e.g. transition metals, platinum metals and 

their oxides (in the form of supported catalysts), oxides and 

carbonates of alkali metals, acid type zeolite catalysts and 

activated carbons (Anis, Zainal 2011). 

4. EMISSIONS OF HEAVY METALS AND TOXIC 

ELEMENTS 

One of the important aspects of gasification and co-

gasification of different kinds of fuels is the emission of 

heavy metals and toxic elements and managing the products 

which contain these substances. Elements present in feed-

stock undergo complex chemical and physical transfor-

mations in the gasification conditions. Figure 1 presents the 

schematically possible behavior of fuel mineral matter in the 

gasification conditions. 

Non-volatile metals are normally distributed in the slag 

and ash at the same level of concentration as in the fuel. Me-

tals characterised by partial volatility can be found in the ash 

and slag, but they also volatilize into the gas phase, and there-

fore are present in gas or post-process aqueous condensate. 

Mercury has a high volatility and is the most mobile of the 

heavy metals contained in the fuel. 

The behaviour of heavy metals and other harmful elements 

during gasification and their content in the individual by-

products of gasification cannot be entirely predicted by mod-

elling based on thermodynamic assumptions. Ilyushechkin et 

al. (2010) in the results of experimental gasification in the 

entrained flow reactor obtained only partial compliance of 

their distribution in the fly ash, slag, gas and wastewater. 

Tanigaki, Manako and Osada (2012) studied the distribution 

of heavy metals in various by-products from the gasification 

of municipal waste. Over 90% of the heavy metals with a low 

melting point (95.2% lead and 92.0% zinc) were found in fly 

ash, and the high-melting metals such as iron and copper, had 

the metallic form. Adlhoch et al. (2000) marked the content 

of mercury, cadmium and thallium in the main co-

gasification product of municipal waste and coal, and also in 

the side products of this process – slag and dust. The process 

was conducted in a fluidized bed reactor, using oxygen-

enriched air as a gasifying agent. The stream of cadmium and 

thallium metals contained in the feedstock supplied to the 

generator, was 75 g/h. The amount brought within with the 

slag was 21 g/h, while with the dust: 26 g/h of cadmium and 

thallium. The gaseous products of the reaction system resul-

ted in below 0.27 g/h of the two elements together. Mercury 

was added with the fuel (2.9 g/h), primarily retrieved on the 

dust filter (2.48 g/h), its stream in the slag was 0.24 g/h, 

while in the raw gas – 0.05 g/h. Saveyn et al. (2010) noted, 

however, that during the gasification of sewage sludge, me-

tals such as copper, lead and zinc are contained mainly in the 

solid residue, while mercury and cadmium have a high ten-

dency to migrate and are usually contained in the condensed 

liquid product or deposited on the particulate filter. In addi-

tion, mercury, due to the tendency to create fine aerosol drop-

lets is often present in the process gas (Marrero et al. 2004). 

 

Fig. 1. Possible ways of mineral matter changes during gasification of solid 
fuels (Ilyushechkin et al. 2010) 

The presence of the various elements in each gas or by-

product is determined by their properties, including volatility, 

mechanical strength and solubility in water. Figure 2 shows 

the division of selected elements according to volatility level. 
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Some components contained in the fuel can result in 

changes in the distribution of metals in the main and by-

products of gasification as a result of chemical reactions and 

phase changes. The addition of fuels with high sulphur and 

chlorine content (sewage sludge, waste plastics, petroleum 

coke and some types of biomass) increases the volatility of 

many elements. Di Donato et al. (2011) found that migration 

of thallium, tin, zinc, cadmium, antimony and arsenic, is 

caused by the formation of volatile chlorides. Font et al. 

(2011) observed, however, that the addition of the selected 

biomass content increases the ratio of a number of elements 

(including heavy metals) in the slag, and decreases their mi-

gration to the fly ash, in studies of carbon co-gasification, 

residues from the processing of waste oil and oil seed. With 

the increase in the content of tested biomass fuels (in the 

range 0–6% by mass) copper, germanium, molybdenum, 

nickel, lead, arsenic, antimony, thallium, boron and zinc 

content decreased in the fly ash. 

 

Fig. 2. The division of elements into groups according to the volatility  
(Erickson 1999) 

Heavy metals and the other toxic elements are present in 

all types of fuels. However, there are groups of waste fuels in 

which the content of toxic elements is particularly high. Se-

wage sludge and municipal waste have the highest content of 

trace elements. Table 2 lists the results of the analysis of 

heavy metals in a sludge and coal in a dry state. 

Table 2. The content of heavy metals in coal and sewage sludge (Bień 2002) 

 Pb 
[mg/kg] 

Cd 
[mg/kg] 

Hg 
[mg/kg] 

Zn 
[mg/kg] 

Ni 
[mg/kg] 

As 
[mg/kg] 

Cu 
[mg/kg] 

Co 
[mg/kg] 

Cr 
[mg/kg] 

Coal 20 <1 <2 15 3 5 23 <2 <2 

Sludge 211 2 <2 567 32 10 829 3 62 

The content of toxic elements in the sludge (especially 

copper, zinc, lead, chromium) is much higher than that in the 

fossil fuels. Heavy petroleum residue and fraction of plastic 

waste and food waste are also considered to be alternative 

fuels rich in toxic metals (Kordylewski 2005). 

The results of experiments submitted by the Environmen-

tal gasification and Industry Council and Canadian Plastics 

Industry Association (2004) indicate a relatively high content 

of lead in waste gas from the processing of plastic fraction of 

municipal solid waste (44.19 μg/m
3
), and the lead and chro-

mium (order: 35.27 and 20.08 μg/m
3
) in the exhaust gas from 

the processing of post-consumer film. The exhaust gases 

following the combustion of plastic fraction gasification 

products contained several times more mercury (3.82 μg/m
3
). 

The total content of heavy metals (silver, aluminium, cad-

mium, copper, mercury, lead and zinc) was noted in 

wastewater from the gasification of both types of waste. The 

total metal content was 1.4 μg/m
3 

for films and 2.5 μg/m
3
 for 

plastic fraction of municipal solid waste. Wastewater from 

the gasification of both types of waste contained similar 

amounts of silver, aluminium, cadmium, copper and mercury. 

Zinc content was doubled and lead content was several times 

higher in the case of the gasification of waste mixtures of 

sorted plastics. Di Donato et al. (2011) observed a particular-

ly high content of heavy metals – lead, zinc, vanadium, nickel 

and molybdenum in the slag created during the co-gasifica-

tion of heavy petroleum residue and coal. 

An important feature of the by-product solid waste is that 

heavy metals can be leached out of them. This determines the 

possible use of waste as well as its storage methods. The 

contamination of land with heavy metals is a harmful phe-

nomenon. Metals, in contrast to organic compounds, do not 

decompose, and even if they migrate into water in the form of 

low toxicity, they are subject to environmental transition to  

a more toxic form. Pinto et al. (2009) studied the properties 

of the gasification of solid waste in contact with water having 

a neutral pH to slightly alkaline (9.1). Despite the benign 

environment, decreasing the solubility of many metals, the 

presence of large amounts of leached nickel was observed in 

caustic. The content of zinc and chromium did not exceed the 

accepted limits for safe materials, but they were also present 

in leachate. Moustakas et al. (2009) studied the behaviour of 

molten slag cooled by water and air in contact for 64 days 

with aqueous solutions having a pH in the range of 3–8. 

Chromium, lead and nickel were immobilized in the slag, 

while copper, manganese, iron and zinc permeated into the 

solution with a very low pH. Capacities of the slag to immo-

bilize metals were dependent on the particle size (the smaller 

elements passed easily into the solution). The slag cooling 

method used also has a significant impact on the leaching of 

heavy metals. Slag rapidly cooled by means of water, had  

a better ability to prevent metal migration due to the ad-

vantage of a suitable amorphous glass structure. The use of 

very high gasification temperature allows slag vitrification 

and thereby the immobilization of heavy metals and the deg-

radation of compounds contained in the organic matter. Addi-

tives of calcium or magnesium oxides facilitate the transition 

of residues in the glass state (Wei et al. 2011). Vitrified solid 

waste can be safely stored or used in the building industry, as 

opposed to the ash, slag and dust remaining after convention-

al gasification or combustion. Vitrification of slag and fly ash 

can be carried out independently, can be integrated in the 

installation or occur during the gasification process. Gasifica-

tion technologies with a direct melting system have been used 

in the disposal of waste deemed hazardous, but have also 

created dynamic commercial installations aimed at energy 

recovery from waste. There are currently dozens of gasifica-

tion plants with direct melting systems under license from 

JFE Steel Corporation and Nippon Steel Engineering, the 

largest of which processes 720 tonnes per day (Arena 2012). 

Plasma gasification is also a prospective technology. Its great 

advantage, especially in the case of municipal waste, is the 

large flexibility for changes in the feedstock, both in the size 

of waste and the chemical composition and moisture. The 

largest commercial plasma gasification installation in Ottawa 



 Natalia Kamińska-Pietrzak, Adam Smoliński / J. Sust. Min. Vol. 12 (2013), No. 4, pp. 6–13 12 

 

operates on the technology of Plasco Energy Group and pro-

cesses 300 tons per day of municipal waste (Plasco Energy 

Group data). 

5.  CONCLUSION 

Gasification and co-gasification can be an environmentally 

safe and an effective method for the disposal of various types 

of waste. Knowledge of waste composition, in particular the 

content of chlorine or heavy metals, and the presence of plas-

tics and fats, ensures the proper selection of process condi-

tions, catalysts or other additives, and the construction of the 

gas purification unit. The problem regarding the formation of 

large amounts of tar occurs in particular in the case of waste 

with a high level of volatile content or containing polymers. 

Reducing the by-product yield of aromatic hydrocarbons can 

be achieved by raising the process temperature and by em-

ploying catalysts. The formation of dioxins, significant in the 

case of fuels with a high content of chlorine, can be visibly 

reduced thanks to the use of high-temperature gasification. 

High-temperature processes also allow immobilizing heavy 

metals present in the slag or in the slag and ash mixture, 

allowing their safe disposal or their use as an aggregate. 
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